electrostatic binding to a DNA phosphate group. Loss of correlation found with the parameters associated with the diamino side chain in series III when series I and III were combined suggests that perhaps different substituents at position 7 dictate different drug-DNA orientations which therein alter the manner in which the 4-diamino side chain is able to interact with the DNA backbone.

Antimalarials. 7-Chloro-4-(substituted amino)quinolines

TARA SINGH,* ROBERT G. STEIN, JOHN F. HOOPS, JOHN H. BIEL, WALLACE K. HOYA, AND DEANNA R. CRUZ

Research Laboratories, Aldrich Chemical Company, Inc., Milwaukee, Wisconsin 53233

Received October 23, 1970

Forty-one derivatives of 7-chloro-4-substituted quinolines were made and tested for their antimalarial activity against Plasmodium berghei in mice. Twenty-seven showed activity.

We have previously prepared¹ many substituted 7chloroquinolines incorporating several novel features in the side-chain amines attached at position 4. The derivatives described in the present paper do not fall into a single class as did the compounds previously reported, but cover a wide variation of substitutional features in the side chain (Table I).

Compounds 24, 26-28, and 37 have been described by Carmack, et al.² The alcohol 24 was used as a key intermediate. We have also used this alcohol for the preparation of **29–36**, using their procedure with slight modification. Similarly, we have used the alcohol 9 as starting material for many derivatives, but in this case, we were able to isolate the comparatively more stable bromo derivative **11** and use it for reaction with various amines.

The acetates 10 and 25 were obtained in our attempted oxidation of the alcohols 9 and 24 with DMSO in Ac_2O according to the procedure described by Burdon and Moffat.³ No oxidation took place even when the variation described by Albright and Goldman^{4,5} was used.

Some of the amines required for this work were made by using literature procedures, e.g., benzylcyclopropylamine, **3,4**,5-trimethoxybenzylmethylamine,⁷ and indanylpropargylamine.⁸ The reduction of the benzylidene intermediate was carried out with NaBH4 instead of using catalysts as prescribed in the literature procedures. 3,4,5-Trimethoxybenzylcyclopropylamine was prepared in the same way. Preparation of the indanylpropargylamine by the literature procedure, *i.e.*, by the alkylation of indanylamine with propargyl bromide, gave a very poor yield of the monopropargylamine. However, this difficulty was solved by formylating the indanylamine and then alkylating it with

propargyl bromide. The resulting formyl derivative was hydrolyzed by treating with 3 N HCl.

Biological Tests.-The compounds were tested for their antimalarial activity against Plasmodium berghei in mice, by Dr. L. Rane, et al.,⁹ by a procedure reported by them. The active compounds and their activity figures are listed in Table II. All others were found to be inactive.

Experimental Section

Preparation of 1, 2, 6, 7, 39, and 40.—A mixt of a 1 M portion of 4,7-dichloroquinoline and 2 M portions of the amine (or the amine HCl as in 6, 7, and 39, in which excess of anhyd K_2CO_3 was also added) in ethoxyethanol was refluxed for 24 hr. The mixt was cooled and filtered (to remove K_2CO_3 if any), and ethoxyethanol was removed under reduced pressure. The residue was mixed with H₂O, basified with NaOH soln, and extd with $\mathrm{Et_2O}$ or $\mathrm{CH_2Cl_2}$, and the ext was dried (K₂CO₃) and concd. The residue was either distd or crystd.

For 40, a 10 M excess of piperazine was used which was later distd off after the removal of ethoxyethanol, and the residue was worked up as usual.

Preparation of 5, 9, and 24.-A modification of procedure A of Surrey and Hammer¹⁰ was used. After the mixt was heated at 150-165° for 6-8 hr, the excess amine was removed by distn under reduced pressure, and the residue cooled and triturated with dil NaOH soln. The product, which generally solidified at this stage, was then purified by crystn.

Preparation of 3, 4, 38, and 41.-A modification of procedure B of Surrey and Hammer¹⁰ was used. After the phenol soln of 4,7dichloroquinoline and 1-2 M portions of the amine was heated at $150-165^{\circ}$ for 4-8 hr, the mixt was cooled and poured into 20%soln of NaOH. After stirring and triturating the product generally solidified, and was then purified by crystn. For 41, a slight excess of 4,7-dichloroquinoline was used to eliminate the formation of the monoproduct.

7-Chloro-4-(3-bromo-1-methylpropylamino)quinoline (11).---To a soln of 44 ml of concd H₂SO₄ in 125 ml of 48% HBr, maintained at 0°, was slowly added 25.0 g (0.1 mole) of 9. The mixt was then heated to boiling and maintained at boiling till (ca. 10 min) a turbidity was formed. After further boiling for 3 min, the mixt was cooled to room temp and extd with CHCl₃. The ext was washed with 10% NaOH and then with H₂O. It was dried (MgSO₄), filtered, and concd. The product was purified by crystn.

7-Chloro-4-[3-(N-phthalimido)-1-methylpropylamino]quinoline (12).—A suspension of 11 (30.0 g, 0.096 mole) and K phthalimide (22.0 g, 0.12 mole) in 500 ml of DMF was heated at 70-80° for 18 hr. The mixt was cooled, dild with 1 l. of H_2O , and extd with

⁽¹⁾ T. Singh, R. G. Stein, and J. H. Biel, J. Med. Chem., 12, 368 (1969); T. Singh, R. G. Stein, H. H. Koelling, J. F. Hoops, and J. H. Biel, ibid., 12, 524 (1969); T. Singh, R. G. Stein, and J. H. Biel, ibid., 21, 801 (1969); ibid., 12, 949 (1969).

⁽²⁾ M. Carmack, O. H. Bullitt, Jr., G. R. Handrick, L. W. Kissinger, and I. Von, J. Amer. Chem. Soc., 68, 1220 (1946).

⁽³⁾ M. G. Burdon and J. G. Moffat, ibid., 88, 5855 (1966)

⁽⁴⁾ J. D. Albright and L. Goldman. J. Org. Chem., 30, 1107 (1965).

⁽⁵⁾ J. D. Albright and L. Goldman, J. Amer. Chem. Soc., 87, 4214 (1965). (6) British Patent 913,898; Chem. Abstr., 59, 509e (1963).

⁽⁷⁾ A. Sonn, Ber., 58, 1105 (1925).

⁽⁸⁾ C. F. Huebner, Belgian Patent 633,762; Chem. Abstr., 61, 3046a (1964).

⁽⁹⁾ T. S. Osdene, P. B. Russell, and L. Rane, J. Med. Chem., 10, 431 (1967).

⁽¹⁰⁾ A. R. Surrey and H. F. Hammer, J. Amer. Chem. Soc., 68, 116 (1946).

TABLE I

CI N

		1				
		Yield,	Crystn	Mp or bp, °C	- 15	
No. 1 2	$\begin{array}{c} {\rm R} \\ {\rm NHCH_2CH(OC_2H_5)_2} \\ {\rm NHC(CH_3)HCH_2CH(OCH_3)_2} \end{array}$	$rac{\%}{43.3}$ 46.2	$_{ m solvent}$	(mm) ^a 150 (0.01) 138–141	Formula ^b $C_{15}H_{19}ClN_2O_2$ $C_{15}H_{19}ClN_2O_2$	Analyses N C, H, N
3	NHCH,	33.0	EtOH-H ₂ O	196–197.6	$\mathrm{C}_{15}\mathrm{H}_{12}\mathrm{ClN}_3$	N
4	NHCH, N	30,0	EtOAc	165	$\mathrm{C}_{16}\mathrm{H}_{14}\mathrm{ClN}_3$	N
5	$\rm NHCH_2CH_2C_6H_5$	40.0	MeOH-cyclohexane	136-139	$\mathrm{C}_{17}\mathrm{H}_{15}\mathrm{ClN}_{2}$	C, H, N
6	NHCH,CH, HN	26.4	EtOAc	211-213	$\mathrm{C}_{14}\mathrm{H}_{13}\mathrm{ClN}_4$	C, H, N
7	NHCH_CH_	31.0	EtOAc	211–213	$\mathrm{C}_{19}\mathrm{H}_{16}\mathrm{ClN}_3$	С, Н, N
8 9 10 11	$\label{eq:norm} \begin{array}{l} \overset{\mathrm{H}}{\overset{\mathrm{H}}} \\ \mathrm{NHC}(\mathrm{CH}_{\mathtt{s}})\mathrm{HCH}_{\mathtt{2}}\mathrm{N}(\mathrm{CH}_{\mathtt{s}})\mathrm{CH}_{\mathtt{2}}\mathrm{C}_{\mathtt{6}}\mathrm{H}_{\mathtt{5}} \\ \mathrm{NHC}(\mathrm{CH}_{\mathtt{s}})\mathrm{HCH}_{\mathtt{2}}\mathrm{CH}_{\mathtt{2}}\mathrm{O}\mathrm{H} \\ \mathrm{NHC}(\mathrm{CH}_{\mathtt{s}})\mathrm{HCH}_{\mathtt{2}}\mathrm{CH}_{\mathtt{2}}\mathrm{O}_{\mathtt{2}}\mathrm{CCH}_{\mathtt{5}} \\ \mathrm{NHC}(\mathrm{CH}_{\mathtt{s}})\mathrm{HCH}_{\mathtt{2}}\mathrm{CH}_{\mathtt{2}}\mathrm{Br} \\ \\ \mathrm{O}_{\underline{\mathtt{s}}} \end{array}$	52.0 45.2 77.0	Me2CO-CHCla Et2O Et2O-heptane	$140-150 (3 \times 10^{-4})$ 174-176 130-132 148-150	$\begin{array}{c} C_{20}H_{22}ClN_3\\ C_{13}H_{15}ClN_2O\\ C_{15}H_{17}ClN_2O_2\\ C_{13}H_{14}BrClN_2 \end{array}$	C, H, N C, H, N C, H, N C, H, N
12	NHC(CH3)HCH4CH4N	74.0	EtOAc-Et ₂ O	150-152	$\mathrm{C}_{21}\mathrm{H}_{13}\mathrm{ClN_3O_2}$	C, H, N
13	NHC(CH ₃)HCH ₂ CH ₂ NH ₂	61.2		$150-160 \ (4 \times 10^{-3})$	C13H16ClN3	C, H, N
14	NHC(CH ₃)HCH ₂ CH ₂ ONH ₂	53.0	EtOAc	141–142	$C_{13}H_{16}ClN_3O$	Ν
15	$\rm NHC(CH_3)HCH_2CH_2N(CH_3)CH_2C_6H_5$	53.0	Cyclohexane	132–133	$\mathrm{C}_{21}\mathrm{H}_{24}\mathrm{ClN}_3$	С, Н, N
16	NHC(CH ₃)HCH ₂ CH ₂ NCH ₂ C ₆ H ₅	71.5	Et ₂ O	138–140	$\mathrm{C}_{23}\mathrm{H}_{26}\mathrm{ClN}_3$	С, Н, N
17	$\rm NHC(CH_3)HCH_2CH_2N(CH_3)_2CH_2CH_2C_6H_3$	43.5	Cyclohexane	63-66	$\mathrm{C}_{22}\mathrm{H}_{26}\mathrm{ClN}_3$	С, Н, N
18	$\mathrm{NHC}(\mathrm{CH}_3)\mathrm{HCH}_2\mathrm{CH}_2\mathrm{NCH}(\mathrm{CH}_3)_2)\mathrm{CH}_2\mathrm{C}_6\mathrm{H}_5$	39.5	Cyclohexane	78-80	$C_{23}H_{28}ClN_3$	C, H, N
19	$\rm NHC(CH_3)HCH_2CH_2N(CH_2C{\equiv}CH)CH_2C_6H_5$	62.1	Purified by chromate	ography	$\mathrm{C}_{23}\mathrm{H}_{24}\mathrm{ClN}_3$	С, Н, N
2 0	NHC(CH ₂)HCH ₂ CH ₂ -NHCH ₂ -OCH ₂ -	33.0	<i>i</i> -PrOH-EtOAc	232–234	$C_{23}H_{30}Cl_3N_3O_3$	Ν
21	OCH _a	61.1		180–190 (5 × 10 ⁻⁴)	$\mathrm{C}_{22}\mathrm{H}_{24}\mathrm{ClN}_3$	С, Н, N
22	NHC(CH ₄)HCH ₂ CH ₂ —N CH=CCH ₂	57.8	Purified by chromate	ography	$\mathrm{C}_{25}\mathrm{H}_{26}\mathrm{ClN}_3$	Ν
23	NHCiCH _a)HCH <u>.</u> CH _. N	79.0		190 (0.01)	$\mathrm{C}_{17}\mathrm{H}_{20}\mathrm{ClN}_3$	С, Н, N
24	NHC(CH ₃)H(CH ₂) ₃ OH	70.0	EtOH	178-180	$\mathrm{C_{14}H_{17}ClN_2O}$	
25	$\mathrm{NHC}(\mathrm{CH}_3)\mathrm{H}(\mathrm{CH}_2)_3\mathrm{O}_2\mathrm{CCH}_3$		C_6H_6	97-99	$C_{16}H_{19}ClN_2O_2$	C, H, N
26 97	$NHC(CH_3)H(CH_2)_3NH_2$	72.0		139-141; 150-160 (0.3) 160-170 (0.4)	$C_{14}H_{18}ClN_3 \\ C_{15}H_{20}ClN_3$	Ν
$\frac{27}{28}$	$\mathrm{NHC}(\mathrm{CH}_3)\mathrm{H}(\mathrm{CH}_2)_3\mathrm{NHCH}_3$ $\mathrm{NHC}(\mathrm{CH}_3)\mathrm{H}(\mathrm{CH}_2)_3\mathrm{NHC}_2\mathrm{H}_5$	57.0 63.0		170-180(0.02)	$C_{16}H_{22}ClN_3$	
29	$\rm NHC(CH_3)H(CH_2)_3NHCH_2C_6H_5$	22.0		185-190(0.15)	$C_{21}H_{24}ClN_3$	С, Н, N
30	$\rm NHC(CH_3)H(CH_2)_3N(CH_3)CH_2C_6H_5$	33.0	<i>i</i> -PrOH	151-153	$C_{22}H_{26}ClN_3$	C, H, N N
31	$\mathbf{NHC}(\mathbf{CH}_3)\mathbf{H}(\mathbf{CH}_2)_{3}\mathbf{N}(\mathbf{C}_2\mathbf{H}_{5})\mathbf{CH}_2\mathbf{C}_{6}\mathbf{H}_{5}$	10.0	Cyclohexane	99–100	${ m C}_{23}{ m H}_{28}{ m ClN}_3$	N
32	NHC(CH ₂) ₃ NHCH ₂ OCH ₃ OCH ₃	27.0		170–185 (7 × 10 ⁻³)	$C_{24}H_{30}ClN_{3}O_{3}$	N
33	NHC(CH ₃)H(CH ₂) ₃ N(CH ₃)CH ₂ -OCH ₃		Et ₂ O	106–107	$\mathrm{C}_{25}\mathrm{H}_{32}\mathrm{ClN}_3\mathrm{O}_3$	C, H, N

$\mathbf{T}_{\mathbf{ABLE}}$ I (Continued)									
No.	R	Yi el d, %	Crystn solvent	Mp or bp, °C (mm) ^a	Formula ^b	Analyses			
34	NHC(CH ₃)H(CH ₂) ₃ -N-CH ₂ -OCH ₃ OCH ₃	8.0	Purified by chromate	ography	$\mathrm{C}_{27}\mathrm{H}_{34}\mathrm{ClN_3O_3}$	N			
35	$ \begin{array}{c} & & & \\ & & & \\ NHC(CH_3)H(CH_3)_3 - N-CH_2C_8H_3 \\ & &$	16.0	THF-petrether	135–136	$\mathrm{C}_{24}\mathrm{H}_{29}\mathrm{ClN}_3$	N			
36	NHC(CH_)H(CH_)_ N	19.0	Cyclohexane	122-123	$\mathrm{C}_{18}\mathrm{H}_{22}\mathrm{ClN}_3$	С, Н, N			
37	CH3			158 (0.03)	$\mathrm{C}_{14}\mathrm{H}_{15}\mathrm{ClN}_2$				
38	$NH \longrightarrow C_2H_5$	41.0	Cyclohexane	124-125	$\mathrm{C_{16}H_{20}ClN_3}$	Ν			
39	NHN N-CH ₃	24.6	EtOAc	223-225	$\mathrm{C}_{14}\mathrm{H}_{17}\mathrm{ClN}_4$	С, Н, N			
40	NNH	83.0	Cyclohexane	113– 1 15	$\mathrm{C}_{13}\mathrm{H}_{14}\mathrm{ClN}_3$	С, Н, N			
41	N R CI	5 0.0	$C_{6}H_{6}$	262-264	$\mathrm{C}_{22}\mathrm{H}_{18}\mathrm{Cl}_{2}\mathrm{N}_{4}$	Ν			

^a All melting points are uncorrected. ^b Compds 24, 27, and 28, having already been described, were not analyzed. Compds 1, 3, 4, 14, 20, 22, 26, 31, 32, 34, 35, 38, and 41 were analyzed for N. All others were analyzed for C, H, and N. All analyses were within $\pm 0.4\%$ of the calcd values.

CHCl₃. The CHCl₃ ext was washed with H_2O , dried (MgSO₄), filtered, and concd. The residual oil solidified when triturated with Et_2O .

7-Chloro-4-(3-amino-1-methylpropylamino)quinoline (13).—A soln of 12 (25.0 g, 0.066 mole) and hydrazine hydrate in 500 ml of EtOH was refluxed for 3 hr. The pptd solid was removed by filtration, the filtrate treated with 200 ml of 6 N HCl, and EtOH evapd under reduced pressure. The cloudy soln was filtered, and the filtrate was evapd to dryness under reduced pressure. The residue was treated with 10% NaOH and extd with CH_2Cl_2 , and the ext dried (MgSO₄) and evapd. The residue was distd to give the product as a light yellow oil.

3-(7-Chloro-4-quinolylamino)-3-methylpropyloxyamine (14).— A soln of 11 (6.26 g, 0.03 mole), N-hydroxyphthalimide (3.26 g, 0.03 mole), and Et_aN (2.02 g, 0.03 mole) in 75 ml of MeCN was refluxed for 4 hr. It was coned to a semisolid and treated with H₂O. The crude phthalimide derivative was removed by filtration, mixed with 98% hydrazine (0.7 ml) in 100 ml of EtOH, and refluxed for 1 hr. EtOH was removed under reduced pressure, and the residue was basified with 10% NaOH and extd with CH₂Cl₂. The combined ext was dried (K₂CO₃), filtered, and evapd to leave behind the product.

Preparation of 15-19, and 21-23.—A mixt of **11** (0.03 mole) and the required amine (0.06 mole) in 100 ml of EtOH was refluxed for 8 hr. EtOH was removed under reduced pressure, and the residue was basified with NaOH soln and extd with $C_{6}H_{6}$. The ext was dried ($K_{2}CO_{8}$), filtered, and evapd to leave behind the product. At this stage, the last traces of the excess amine could be removed by vacuum distn after which the product was purified either by distn or by crystn.

7-Chloro-4-(2-benzyl-N-methyl-1-methylethylamino)quinoline (8) was prepd starting from 7-chloro-4-(2-chloro-1-methylethylamino)quinoline¹¹ and N-benzyl-N-methylamine by the procedure described for 15-19.

7-Chloro-4[3-(3,4,5-trimethoxybenzylamino)-1-methylpropylamino]quinoline (20).—A soln of 13 (5.0 g, 0.02 mole), 3,4,5trimethoxybenzaldehyde, and p-TsOH (0.2 g) in 250 ml of PhMe was refluxed for 18 hr, using a H₂O separator. The mixt was cooled to room temp and shaken with a 50 ml of a concd soln of K_2CO_3 , and the PhMe layer was sepd, dried (K_2CO_3), and evapd *in vacuo* to dryness. The residue was dissolved in 125 ml of EtOH and reduced with NaBH₄ in the usual manner. The product was converted into the HCl salt.

The same procedure was used for **32**, starting from the amine **26**, but the product was isolated as a free base and purified by distn.

Preparation of 29-31, 33-36.—The procedure described by Carmack² was used. **31** was distd and then chromatographed on basic alumina using Et_2O -petr ether (5:95) as eluting solvent. Then it was crystd from cyclohexane. Similarly, **35** had to be chromatographed for purification. **34** could not be obtained in sufficient purity even after exhaustive chromatography. Its elemental analyses were not satisfactory, except for the titrable N (calcd, 5.60: found, 5.36). It was possibly contaminated with 3,4,5-trimethoxyphenylcyclopropylamine.

3,4,5-Trimethoxybenzylcyclopropylamine.—A mixt of 3,4,5-trimethoxybenzaldehyde (64.0 g, 0.33 mole), cyclopropylamine (20.0 g, 0.35 mole), and 300 ml of MeOH was stirred for 8 hr. To this was added 18.9 g (0.5 mole) of NaBH₄ in portions with stirring in 0.5 hr. The mixt was stirred for 2 hr more. The solvent was evapd *in vacuo*, the residue was treated with H₂O and extd with Et₂O, and the ext was worked up as usual: yield, 24.4 g (30.0%); bp 115–120° (1 mm). Anal. (C₁₃H₁₃NO₃) C, H, N.

1-Formamidoindan.—A mixt of 1-aminoindan (26.65 g, 0.2 mole) and ethyl formate (50 ml) was refluxed for 2 hr. The product crystd on cooling: yield, 25.0 g (78.0%). The anal. sample was recrystd from ethyl formate, mp 105–106°. Anal. ($C_{10}H_{11}NO$) C, H, N.

1-(N-Formyl-N-propargylamino)indan.—To a suspension of NaH (4.8 g, 0.2 mole) in 100 ml of DMF was added 1-formamidoindan (29.0 g, 0.18 mole) in small portions with stirring over a period of 10 min. The mixt was then warmed at 65–70° for 1 hr and cooled in an ice-water bath, and propargyl bromide (26.2 g, 0.22 mole) was added through a dropping funnel in about 0.5 hr. The color changed from blue to off-white. After stirring at room temp for 16 hr, DMF was removed under vacuum (bath temp about 60°). The viscous residue solidified to give 30.0 g (83.3%) of the product. An anal. sample was crystd from petr ether, mp $68-70^{\circ}$. Anal. (C₁₈H₁₈NO) N.

1-(N-Propargylamino)indan.—A suspension of 1-(N-formyl-N-propargylamino)indan (52.0 g of the crude material) in 200 ml of

⁽¹¹⁾ Rhone-Poulenc, S. A., Belgian Patent 612,207; Chem. Abstr., 58, 9099b (1963).

				alarial activ				·		alarial activ	
No."	D	C	TD	T - C	$Remarks^{c}$	No.ª	D	C	TD	T - C	Remarks ^c
6	40	0	0	1.3		28	160	0	0	5.8	
	160	0	0	5.5			320	1	2		Curative; tox:
	640	2	0		Curative		640	2	3		Curative; toxi
8	40	0	0	4.5		29	40	0	0	7.2	Active
	160	0	0	11.7	Active	20	80	0	4	9.8	Toxie
	640	3	0		Curative		160	0	5	5.0	Toxie
3	20	0	0	9.1	Active		10		0		<i>a</i>
	80	0	0	12.1	Active	30	40	3	0		Curative
	320	3	0		Curative		$\begin{array}{c} 160 \\ 640 \end{array}$	$\frac{5}{4}$	$\begin{array}{c} 0 \\ 1 \end{array}$		Curative Curative; tox
14	40	0	0	0.3			040	æ	1		Curative, tox
	160	0	0	1.1		31	40	0	0	8.7	Active
	640	0	0	6.9	Active		160	0	3	17.4	Active; toxic
15	20	0	0	4.5			640	0	5		Toxic
	80	0	0	11.7	Active						
	320	3	ő		Curative	32	20	0	- 0	0.6	
	020		0		Curative		80	0	0	4.2	
16	10	0	0	0.2			320	0	0	6.2	Active
	40	0	0	9.8	\mathbf{Active}						
	160	0	0	12.2	Active	33	40	0	0	4.3	
1.77	20	0	0				160	0	0	11.9	Active
17	20	0	0	4.7	A		640	1	$\overline{2}$	25.9	Curative; tox
	80	0	0	8.1	Active						
	320	0	3		Toxic	34	40	0	0	0.2	
8	20	0	0	9.5	Active		160	0	0	1.0	
	80	0	0	15.7	Active		640	- 0	0	6.6	Active
	320	3	0		Curative	0.	10	~	0		
0	10	0	0	0.4		35	40	0	0	4.4	
19	10	0	0	0.4			160	0	0	12.8	Active
	40	0	0	6.4	Active		640	3	0		Curative
	160	1	0		Curative	36	40	0	0	14.1	Active
20	40	0	0	3.1		30	40 160		0	14.1	Curative
	160	0	5		Toxic		640	$\frac{4}{3}$	$\frac{1}{2}$		Curative; tox
	64 0	0	5		Toxic		040	.5	2		Curative; tox
21	40	0	0	5.4		38	20	0	0	9.7	Active
	160	Ő	$\overset{0}{2}$	6.8	Toxic		40	0	0	11.5	Active
	320	$\frac{3}{2}$	3	0.0	Curative; toxic		80	3	0		Curative
	020	2	0		Curative, toxic		160	5	0		Curative
22	40	0	0	3.8			320	5	0		Curative
	160	0	0	11.0	Active		640	5	0		Curative
	640	õ	0		Curative						
0	40	0	0	0 1	A _4:	39	40	3	0		Curative
3	40	0	0	8.1	Active		160	4	0		Curative
	$\begin{array}{c} 160 \\ 640 \end{array}$	0 4	$0 \\ 1$	13.7	Active Curative; toxic		640	5	0		Curative
0				0.1		40	40	0	0	0.4	
:6	20	0	0	9.1	Active	10	160	0	3	v i *	Toxic
	80	0	0	12.1	Active		640	0	5		Toxic
	320	3	0		Curative		0.10		.,		
27	40	0	0	4.4		41	40	0	0	5.8	
	160	0	0	7.0	Active		160	0	0	9.8	Active
	640	1	0		Curative		640	0	5		Toxic

TABLE H

^a Numbers refer to those in Table I. ^b D_1 dose in mg/kg; C, cures; TD, toxic deaths when mice die 2-5 days post infection, attributed to drug toxicity; $T - C_1$ increase in mean survival time of the treated mice over the control group. ^a A compd is active if the T - C exceeds 6.1 days, and curative if one or more mice live for 60 days or more post infection.

3 N HCl was refluxed with vigorous stirring till the soln became clear (about 1 hr). The mixt was cooled and neutralized with K_2CO_3 . The brown oil was extd and the Et_2O ext worked out as usual: bp 86-88° (0.45 mm); yield, 34.0 g (76.4%). A portion was converted into the HCl salt and crystd twice from EtOH, mp 183-185°. Anal. (C₁₂H₁₄NCl) C, H, N, Cl.

Acknowledgment.—This work was supported by U. S. Army Medical Research and Development Command under the Research Contract No. DA-49-193-MD-2869 and is Contribution No. 858 from the Army Research Program on Malaria.